


HI-TECH PICC STD
Version 9.60PL1 Release Notes

Copyright (C) 2007 HI-TECH Software.
All Rights Reserved. Printed in Australia.

PICC is licensed exclusively to HI-TECH Software
by Microchip Technology Inc.

Produced on: September 25, 2007

HI-TECH Software Pty. Ltd.
ACN 002 724 549

45 Colebard Street West
Acacia Ridge QLD 4110

Australia

email: hitech@htsoft.com
web: http://www.htsoft.com
ftp: ftp://www.htsoft.com

mailto:hitech@htsoft.com
http://www.htsoft.com
ftp://www.htsoft.com


THIS FILE CONTAINS IMPORTANT INFORMATION RELATING TO
THIS COMPILER. PLEASE READ IT BEFORE RUNNING THIS

SOFTWARE.

3



Chapter 1

Introduction

1.1 Description
This is a patch level update for version 9.60. It provides fixes for reported bugs and adds support for
any new devices released during the interim period.

1.2 Notes
Please note that the version 9.xx command line driver has a different format for options compared
with previous versions. Please refer to the user manual for details on using the command line options.
During the transitional period, the new command line driver will accept the old-style options, but
this should not be relied upon for future versions.

1.3 Previous Versions
This compiler succeeds PICC STD v9.60 which was released in March 2007.

4



Chapter 2

New Features

2.1 General
New Processors (9.60PL1) Support for these processors have now been added: 12F519, 16HV785,

16F882.

New Processors (9.60) Support for these processors has now been added: 16F610 and 16HV610.

MPLAB plug-in (9.60) This version of the compiler will install a new revision of the compiler’s
plug-in for Microchip’s MPLAB IDE. This plug-in is suitable for use with all version 9.xx
compilers. Once installed, a new selectable language toolsuite will appear. Set the toolsuite to
HI-TECH Universal ToolSuite. This toolsuite can be used to compile projects using version
9.xx PICC, PICC-Lite, PICC-18 and dsPICC compilers.

Off-line activation (9.60) It is now possible to perform an off-line activation for Mac OSX and
Linux versions of the compiler.

New Processors (9.55) Support for the latest processors has been added (12F609, 12HV609, 12F615,
12HV615, 16F616, 16HV616, 16F631, 16F667, 16883, 16F884, 16F886, 16F887).

2.2 Driver
–ECHO option (9.60PL1) The option will echo the command line given to the driver. This can be

useful if the command line is generated and being run by an IDE or other build process.

5



New Features Driver

–CHECKSUM option (9.60) This new option can be used to generate a checksum over the con-
tents of an address range and store the result at a nominated address location. The result can be
stored in program memory or EEPROM. Sample code has also been provided to demonstrate
runtime verification of this checksum.

–RUNTIME=+RAMTEST (9.60) Adding this option to the driver during the link stage will build
in a simple checkerboard RAM test to verify the integrity of each cell of general purpose
RAM in the targetted device. The tests performed are contained within the library routine
__ram_cell_test. This module can easily be replaced with a user-defined implementation
if the default cell test is insufficient for requirements.

_HTC_EDITION_ (9.60) The driver now defines a new preprocessor symbol to identify whether
the compiler in use is a PRO, Standard or Lite edition. The value of _HTC_EDITION_ in each
case is 2, 1 and 0 respectively. Source that tests the value of this symbol can compare against
these values or against symbols __PRO__, __STD__ or __LITE__ definitions in htc.h.

–RUNTIME=+DOWNLOAD (9.55) Adding this option to the driver during the link stage will
generate a program that has particular enhancements that make the program more suitable to
be dowloaded to a device via a pre-installed bootloader.

Input HEX parameters (9.55) Intel HEX files listed on the driver’s command line get merged with
the compiled output via Hexmate. Now the driver permits Hexmate’s additional specifications
to the the input file such as address range restriction and address shifting. As the additional
specifications are passed directly to Hexmate they should conform to Hexmate’s expected
syntax. For example the input 0-ff+1000,generic.hex will restrict the data being read
from generic.hex to that contained between addresses 0 and FFh and merge this data at an
address which is shifted up by 1000h.

–SETOPTION enhancement (9.55) From version 9.55, --SETOPTION option allows an option file
to be passed to any of the intermediate applications employed in the project compilation pro-
cess. Now, an intermediate application can be dropped from the build process by passing
off as the file parameter to the application. Note that only Clist and Hexmate are considered
non-critical to the build process. Turning off any other application will cause the build to fail.

–FILL=hexcode,data (9.55) Hexmate’s -FILL=hexcode,data enhancement is available from the
driver’s –FILL option. For more details on the ,data enhancement read Hexmate’s new features
below.

Memory symbols (9.55) New preprocessor symbols are defined by the driver to define the am-
mount of program memory and EEPROM memory. These symbols are named _ROMSIZE and
_EEPROMSIZE respectively. These symbols are also consistent with the PICC-18 compiler to
allow from greater code portability. The existing definition of EEPROM_SIZE will be retained

6



New Features Libraries

for backward compatibility but is not as portable. Where possible, use the newer _EEPROMSIZE
symbol instead.

2.3 Libraries
New routines __ram_cell_test / ram_test_failed (9.60) This routine has been added to

the compiler library. These routines are not intended to be called directly from user code but
will be called from the generated runtime startup code is to include a RAM integrity test. The
cell test will be called repeatedly for every address in general purpose RAM. If the cell test
detects a failure on the RAM cell, it can pass the failure code to the failure handling routine.
Being library routines, a user can replace either of these routines with more sophisticated
implementations to suit their needs.

2.4 Header files
ADGO SFR bit (9.60PL1) For those devices which define the bit ADGO in the ADCON0 register, an

alternate definition, GODONE is now available. This definition should be used in cases where
code might expected to be compiled on a variety of chips as this definition is more commonly
used in newer devices.

_HTC_EDITION_ identifiers (9.60) The header file htc.h now provides definitions for the possi-
ble values that the preprocessor symbol _HTC_EDITION_ could contain. The possible values
of this symbol are __PRO__, __STD__ and __LITE__.

__IDLOC7() macro (9.55) A new macro defined in pic.h permits programming of up to seven bits
per ID location. This macro should ONLY be used on those devices which support seven bit
ID location programming. Other devices should continue to use __IDLOC().

2.5 Hexmate
-ADDRESSING (9.60) This new option will allow the address fields in all input options to be

entered in an addressing format other than byte addresses. This is particularly advantageous
for the PICC compiler as the program memory is word addressed (use -ADDRESSING=2).

-FILL=hexcode,data (9.55) The -FILL option now accepts additional flags to further customize
how a fill code will be applied to unused program memory. The first (and only) flag imple-
mented is ,data. Adding this to the -FILL command will restrict the program filling to act
only on areas of program space that already contain data. This facility will cause the records

7



New Features Sample code

of the generated output file to all be of the same length and to all align on addresses which
are a multiple of that length. No new data records will be generated for regions of program
memory that are void. The default length is 16 bytes and can be changed with the -FORMAT
option. Intel hex files that have been conditioned in this way are optimized for bootloaders.

Data record length (9.55) Now the maximum length of an INHX data record has been increased
from 32 to 128 data bytes. The default maximum length of a data record still remains at 16
bytes.

Checksum algorithms (9.55) Previously checksums would only be calculated using an 8 bit sum-
mation algorithm. This option has now been enhanced so that one of eight simple algorithms
can be selected to perform the computation.

Checksum endianism (9.55) You can now control whether multi-byte checksum result be stored in
little-endian or big-endian format. When specifying the width of the checksum, use a negative
width to specify little endian format. If no width is specified, the default result will be two
bytes wide stored in little endian format.

No output option (9.55) It is now permissible to use the -Ofilename option without specifying
a filename. Leaving filename blank will suggest that no hex file will be generated. This is
useful if hexmate is being used purely for its diagnostic abilities. For example verifying hex
file integrity or creating a logfile summary. This is different from not specifying the -O option
at all, which will send the generated output to stdout.

2.6 Sample code
Checksum verification (9.60) A new sample is available that demonstrates how to calculate a check-

sum over code space and verify this result against the executable’s built-in result which was
calculated at compile time using the driver’s --CHECKSUM option.

Bootloader version 3.11 (9.55) An updated bootloader is now distributed. The new bootloader
works across a greater range of baud rates, is more reliable, can be compiled into an even
smaller code footprint and is simpler to use than the previous bootloader. Combined with
other features in this toolsuite release, download applications are no longer required to imple-
ment a dummy interrupt routine.

8



Chapter 3

Changes

3.1 Driver
Driver option --CHAR (FUTURE) This option is expected to be discontinued in the the next mi-

nor version update. This option is used to change the signed characteristic of the char type
when this has not been made explicit in the variable’s definition. It is recommended that
projects using this option, discontinue the use of this option. If using --char=unsigned,
simply drop this option as the undesignated char will default to unsigned in this compiler.
If using --char=signed then any undesignated char should be explictly defined as signed
char.

Driver option -O (9.60PL1) If this option was used to specify a path for the generated output files
AND the --OUTDIR directory specified a path for output files, it was ambiguous which would
take precedence. Similarly, if -O was used to specify a file format by using a file extension
AND --OUTPUT was used to specify a file of a differing format, this too would be ambiguous.
In light of this confusion, the functionality of -O has now changed. Any file extension specified
to this option will be ignored. Should the paths specified to -O and --OUTDIR differ, this will
now produce an error.

Startup clearing code (9.60) The generated startup code for clearing bit types and uninitialized
variables contains more comments to better describe the memory clearing process.

Address ranges in –FILL and input.hex (9.60) Previously any address range fields defined in a
--FILL option or when selecting a specific range in an input hexfile had to be entered as byte
addesses (which mean multiplying each program address by two). Now address fields are

9



Changes Assembler

required to be entered as word addresses which corresponds to the processor’s natural form of
addressing.

MPLAB_ICD symbol (9.60) The defined preprocessor symbol MPLAB_ICD is being phased out.
The replacement symbol __MPLAB_ICD__ is now defined and performs exactly the same duty.
The new symbol provides better standards conformance and portability across into PICC-18
and dsPICC toolsuites. For a time the old symbol will continue to be defined for maintenance
of existing projects, however new projects should not refer to the old symbol.

–MAPFILE option (9.55) This option provided duplication of the -M option’s functionailty. It has
now been removed. Any project which currently uses --MAPFILE should now use the equiva-
lent option, -M.

EEPROM_SIZE (9.55) A new driver defined preprocessor symbol, _EEPROMSIZE supersedes the
previous EEPROM_SIZE definition. Existing EEPROM_SIZE definitions will be retained for
maintenance of older projects, however it is advised that new projects should use the _EEPROMSIZE
symbol.

3.2 Assembler
Object file format (9.55) The object file format has changed since version 9.50 (which used version

3.7). The new object file version is 3.8. The consequence of this is an object file compiled from
the version 9.60 toolsuite cannot be linked by the version 9.50 (or prior) toolsuite. However
objects compiled by a version 9.50 toolsuite can be linked by the 9.60 toolsuite. If you are
distributing objects or library files containing objects compiled by the version 9.60 compiler,
be aware that if your customers are using a lesser version of the toolsuite they may also need
to obtain an updated linker.

3.3 Hexmate
Input file specifications (9.55) Special conditions for input files such as range-restriction and ad-

dress shift were requested with the command line syntax filename,<specs>. Now the specifi-
cations are to be listed before the filename ie. <specs>,filename.

Default checksum endianism (9.55) Previously calculating a checksum to store a result of unspec-
ified width, the default result width would be two bytes and the bytes stored in big-endian for-
mat. Now the default result will be stored in little-endian format. To select the old behaviour,
specify a width of two by adding w2 to the -CK option.

10



Changes Chip configuration file

3.4 Chip configuration file
New attributes (9.55) The following new attributes have been added to the chip configuration file

to better describe various devices:

• FLASH_READ Defines the number of program words that are read upon an execution
of a read from flash memory. Defaults to zero if unspecified.

• FLASH_WRITE Defines the number of words that are transferred to flash memory dur-
ing execution of a single write to flash. Defaults to zero if unspecified.

• FLASH_ERASE Defines the number of program words that are erase upon execution of
a single flash erasure operation. If unspecified, defaults to the FLASH_WRITE value.

• CONFIG Define an address range for device configuration registers if this device differs
from the default for that architecture.

• IDLOC Define an address range for user ID locations if these locations differs from the
default for this architecture.

3.5 Libraries
pic???-p.libs (9.55) These libraries which contain the routines used for writing to flash have been

further classified to describe new PIC variants that employ new techniques for writing to flash.
This has allowed further optimization of the flash writing routines for some devices.

3.6 Sample code
PICDEM2+ (9.60PL1) Some changes have been made to this project so that the effective precision

of the A2D result has been reduced and reduces noisey samples sending spurious updates to
the screen. Also changed the reference to SFR bit ADGO to GODONE as this is more portable.

PICDEM2+ revision 6 (9.60PL1) Also added preliminary support for building this project for the
PICDEM2+ revision 6 board. If compiling for the revision 6 board, define the preprocessor
symbol _PICDEM2_REVISION_ to be 6.

3.7 Documentation
New readme layout (9.55) As the content of the readme file has increased in recent releases, the

style of this document has been enhanced to include more formal sections for easier naviga-
tion. The PDF version of the readme document now includes bookmarks.

11



Chapter 4

Limitations

4.1 General
PIC16F59 banking This baseline device implements eight selectable banks of general purpose

RAM. This compiler only supports accesses into the first four.

PIC12F519 data flash This baseline device implements 64 bytes of data flash from address 400h
to 43Fh. Presently the compiler does not include any facility to access this memory range.

4.2 Preprocessor
Incorrect result for sizeof The result of the sizeof preprocessor operator when applied to a pointer

will always return 1. Use of the C sizeof operator will return the correct value.

4.3 Parser
Missing parenthesis not detected A missing end parenthesis is not detected in variable declara-

tions when the variable is type cast. For example,

static char C @ ((unsigned)&PORTA;

This problem does not appear to affect any output code, but may cause problems when using
third-party software tools.

12



Limitations Code Generator

Qualified arrays generate error The compiler generates an error when compiling complicated
qualified arrays, e.g.:

const char * const * const listnames[] = {menu0, menu1};

The error is not issued if the array is not qualified, or for arrays of more basic types.

Structure initialization Locally defined structures cannot be initialized.

Divide-assign/Modulus-assign by over-sized constant Using the /= or %= operators to assign a
quotient or remainder to a variable, where the divisor in the operation is a constant value
which exceeds the maximum capacity of the resultant data type will parse incorrectly and
could result in an error. If the division and the assignment appear as two separate operators,
the problem does not occur. eg.:

unsigned char x; // maximum value for this data type is 255
unsigned int y; // maximum value for this data type is 65535
x /= 9999; // Div-assign with over-sized constant, result may be in error
y /= 9999; // Constant is within capacity of ’y’, will parse correctly
x = x / 9999; // Assignment, division separate, will parse correctly

4.4 Code Generator
Functions returning ROM structure For Highend devices (17Cxxx), a function cannot return a

copy of a structure which resides in ROM.

Indirect function calls For Highend devices (17Cxxx), certain indirect function calls with more
than one byte of argument may produce incorrect code. Indirect function calls should not be
used on Baseline devices.

Functions as arguments to printf The argument list to printf or sprintf should not include function
calls. For example,

printf(“x = %f, sin(x) = %f\n”, x, sin(x*3.141592/180.0));

This code demonstrates a workaround:

y = sin(x*3.141592/180.0);
printf(“x = %f, sin(x) = %f\n”, x, y);

13



Limitations Libraries

Error on initialization of complex structures Any structure using structures within a structure or
union cannot be directly initialized. For example, using the following types where a structure
is a member of a union, initialization of the structure’s bitfields will generate an error.

typedef struct {
unsigned b0:1, b1:1, b2:1, b3:1, b4:1, b5:1, b6:1, b7:1

} byte_bits;
typedef union {

byte_bits bits;
char byte;

} byte_or_bits;

This will generate a compiler error:

byte_or_bits example = { {1,0,1,1,0,1,0,0 } };

Instead, use a single value:

byte_or_bits example = { 0b10110100 };

Multiple block variable declaration Functions which have variables declared within multiple blocks
where code within the block requires the use of temporary memory, may get corrupted when
compiled with global optimizations. A workaround is to move the inner variable declaration
outsize of the block.

Void pointer size Void pointers are one byte in size and may not be large enough to point to all
objects.

4.5 Libraries
Minimum floating point value The floating point math libraries cannot perform operations pre-

dictably on numbers below the order of 1e-35. The result is either correct or zero.

14



Chapter 5

Bug Fixes

The following are descriptions of bugs that were present in the previous version(s) of the compiler
and have been fixed in this release.

5.1 General
Product activation (9.60PL1) (Windows only) Some installed compilers became unusable after

certain Microsoft Windows system updates had been installed. Some compilers installed on
the Windows XP operating system de-activated, reporting that they were not installed correctly
after the updates had been applied. Although the problems were only exhibited on the XP
operating system, compilers installed on other variants of Windows could have potentially
de-activated in the same way.

5.2 Driver
Memory clearing (9.60PL1) In rare circumstances, compiling a project for a midrange PIC with

no common memory may have generated defective startup code. If this circumstance had
occurred, it would have been easily detected as the program would have not been able to reach
the start of main.

Overlap idata_0 (9.60PL1) If compiling for some baseline devices, link time warning number 596
may have been generated claiming that segment idata_0 had been overlapped. This has now
been fixed.

15



Bug Fixes Driver

Psects in COMBANK class (9.60) Psects to be linked in the COMBANK memory class may have
missed out on allocated space if psects linked in the overlayed BANK0 class had already filled
the COMBANK address range. This resulted in a Can’t find space...in segment COMBANK
linker error. Now the psects of the COMBANK class have first priority when being linked so
that this scenario is now avoided.

Memory clearing in BANK0 (9.60) In rare circumstances the clearing of memory in bank 0 may
not have occurred on some Baseline or Midrange PIC devices. This scenario was dependant
on the size of various psects. This event may have been triggered if the size size of rbit_0
psect was greater than zero bytes AND the size of the COMBANK class minus temp psect was
greater than the size of rbit_0 psect but less than (rbit_0 plus rbss_0).

10F222/0 ID locations (9.60) The user ID locations were being linked at the wrong address for the
PIC10F220 and PIC10F222.

PIC17 reset bits (9.60) The --runtime=+resetbits feature used to save the reset condition indi-
cator bits during startup, saved the wrong bits for PIC17 devices.

Indirect access in PIC17 (9.60) In some cases (also dependent on potential optimizations occur-
ring later in the build process), indirect data access would not have worked for PIC17 devices.

Language fallback (9.55) If the compiler generated a message in a language other than English,
for which the languages messaging file contained no translation, the English message should
have been generated. This was not happening. Instead, the result would be an error claiming,
An error, warning or message was generated, but no description is available.

Interrupt context with 16F873/4 (9.55) Fixed a problem that affected only the 16F873 and 16F874
devices where their W register could be corrupted during and interrupt if being debugged with
the MPLAB ICD2.

PIC17 linker options (9.55) A number of issues have been found in the driver generated linker op-
tions when compiling for PIC17 series devices. These issues may result in Can’t find space
messages relating to common memory; or wrongly positioned psects which may cause erro-
neous program behaviour.

Powerup psect (9.55) An issue has been found concerning the placement of the powerup psect.
When defined, this psect may overlap with others generating an error message from the linker.

Memory summary (9.55) The percentage values displayed by the driver after successful compila-
tion are sometimes incorrect. The values displayed in the map file are valid.

Linux activation (9.55) When using a system language setting under Linux (say through the LANG
or LANGUAGE environment variables), all activations will fail.

16



Bug Fixes Code Generator

5.3 Code Generator
Bank selection near shift (9.60PL1) A bank selection may have been avoided (by conditional ex-

ecution paths) near a left or right shift of a banked variable where the result of the shift was
not assigned back to the variable, but used as part of a larger computation. eg. charvar1 =
charvar2 ^ (bankedchar> >1);

Inefficient code for 80000000h (9.60PL1) Some statements that used the constant value 80000000h
resulted in particularly inefficent code sequences to be produced. The generated code would
have worked but was costly in terms of program memory.

Reading eeprom-qualified variables (9.60PL1) In multi-bank devices, attempts to read the con-
tents of eeprom variables while a bank other than zero was selected may have returned an
erroneous zero value.

IRP selection across function call (9.60PL1) If code required an indirect data access immediately
before and immediately after a function call, the second access would reset IRP to the selection
required for the first access. This caused a problem if the two accesses were to differing sides
of the 100h address boundary.

Pointer to signed long (9.60) Fixed a Can’t generate code error that resulted from a code sequence
that looked like this:

if((*signedLongPointer += constant) == x)

Copying of const structures (9.60) Copying the contents of a structure in program memory to a
structure in RAM would generate a Can’t generate code error if the structure was greater than
4 bytes in size. This has now been fixed.

Pointers to const structures (9.60) Fixed a Can’t generate code error that resulted from an incre-
ment or decrement of a pointer to a structure in program memory if the structure was greater
than 255 bytes in size.

if(temp32> >24 != x) (9.60) Testing the result of a 32 bit variable right-shifted by 24 bit positions
returned the wrong result. This was only the case where the result from the right shift was
used for comparative purposes. Assigning the value of this right-shift to a variable may have
assigned a correct value.

Bit assign bank selection (9.55) Corrected the following scenario:

static bankX bitX1,bitX2;
static bankY bitY;
bitX1 |= bitY; // if bitY==0, bankY remains selected
bitX2 = 0; // assumed bankX was selected, assignment failed

17



Bug Fixes Assembler

Bitfield inversion (9.55) A syntax error may be generated when a single bit bitfield is XORed with
1 and written back to itself in the structure.

Can’t generate code for function pointers (9.55) The following code will incorrectly cause a CGC
error:

void (*func_ptr)(void);
void main(void){

(*func_ptr)();
}

5.4 Assembler
IORLW 0 removal (9.60) In some cases this instruction is used to assert the Z status flag based on

the contents of the working register. If a CLRF instruction appeared between the IORLW and
the instruction that actually loaded the working register it was possible that the IORLW would
be optimized away erroneously.

MOVF x,W removal (9.60) An optimization that removed a MOVF x,W instruction when the work-
ing register was known to already contain the same value as x should not be performed if x
was INDF.

Unknown op else/elsif (9.60) The assembler did not recognise these directives and would pro-
duce an unknown op error if used.

Crash on endm (9.60) In rare cases, the assembler optimizer would crash if the source contained
an endm directive. Whether the crash occured or not was dependent on the code sequences
that surrounded the directive.

IRP removal (9.55) A bug in the assembler may incorrectly remove instructions that clear the IRP
(indirect data access) bit prior to accessing the INDF register. This bug will only occur for code
that indirectly accesses objects in bank 2 or 3; that is compiled with the assembler optimizer
enabled; and contains a code sequence that sequentially clears, sets then clears again the IRP
bit, however not all such code sequences will trigger this bug.

Removal of bank selection instructions (9.55) Several instances of the assembler optimizer re-
moving instructions that select the required RAM bank have been found and corrected.

ORG directive (9.55) The ORG directive was not being processed correctly. Although correctly
displayed in the assembler list file, the output following the directive was not being offset by
the specified amount.

18



Bug Fixes Parser

5.5 Parser
#pragma regsused (9.60) This pragma was broken in the beta release (version 9.55) and has been

corrected.

Structures in unions (9.55) Initialization of a structure that was the first member of a union would
result in unnecessary errors. This initialization is now possible.

5.6 Preprocessor
Numbers adjoining definitions (9.55) When a number immediately preceded a preprocessor-defined

symbol, and the two were not separated by white-space, and the preprocessor symbol started
with the characters A-F, the preprocessor would fail to expand that symbol.

5.7 Linker
Linker % operator produces incorrect address (9.55) The % operator in the linker options which

can allow placement of a psect at an address being a multiple of the % operand does not always
work for some values of the operand.

5.8 Libraries
16F688 EEPROM routines (9.60PL1) The eeprom access functions would not have worked if

compiling for the 16F688 device. The equivalent macro forms would not have been affected.

Fixup errors in persist.c (9.55) When a persistent psect was linked at the top of a RAM bank, fixup
errors may be produced for the __Hxxx style symbols used in these routines.

5.9 Header files
pic16f685.h (9.60PL1) Definitions for SFR bits SSPIE and SSPIF were not visible for the 16F677

device.

5.10 Hexmate
-STRING crash (9.55) In some cases when -STRING was used incorrectly, Hexmate would crash

rather that producing an error.

19



Bug Fixes Chip Configuration File

-FIND did not find (9.55) It was possible for the -FIND feature to fail to detect a particular code
sequence if the opcode spanned over an address which was a multiple of 64.

Used memory log (9.55) If generating a logfile, used memory summaries may have included large
ranges of unused memory. For this to occur a hex data source needed to have a segment of
data aligned up to an address which was a (multiple of 64) minus 1, and the next address used
was a multiple of 64 and was from the same hex data source. This did not affect the generated
hex file in any way, only the used memory summary for that data source (in the log file) was
affected.

32-Bit Checksums (9.55) If generating a 32 bit wide checksum, the result would always be zero.

Extra extended record (9.55) If a data record was being output and it was to be less than the maxi-
mum length of a data record and the record is followed by an extended address record specify-
ing a +2 upper-address shift or greater, the first data record would be preceded by an erroneous
extended address record.

5.11 Chip Configuration File
16F882 EEPROM (9.60PL1) The 16F882 has only 128 bytes of EEPROM but the device file de-

tailed that it had 256 bytes. This has been corrected.

ICD2 ranges (9.60PL1) The ICD and/or ICD2 reserved memory resources were incorrectly defined
for the 16F627A, 16F628A, 16F685, 16F689 and 16F690 devices. The reserved memory
resources were not defined for 16F610, 16HV610, 16F616 and 16HV616.

20



Chapter 6

Addendum

6.1 Microchip errata
Refer to Microchip’s website to there are any known errata issues relevant to the device that you are
targeting.

6.2 Updates
Monitor HI-TECH Software’s web site or subscribe to Announcements on HI-TECH Software’s on-
line forums for information relating to new versions or patches. Intermediate fixes to issues reported
within this release will be posted to the Known issues forum relevant to this compiler. Note that the
known issues will only be accessable to forum users once they have logged-in.

21

http://www.htsoft.com
http://www.htsoft.com/forum/all/ubbthreads.php
http://www.htsoft.com/forum/all/ubbthreads.php


Addendum Updates

22


	Introduction
	Description
	Notes
	Previous Versions

	New Features
	General
	Driver
	Libraries
	Header files
	Hexmate
	Sample code

	Changes
	Driver
	Assembler
	Hexmate
	Chip configuration file
	Libraries
	Sample code
	Documentation

	Limitations
	General
	Preprocessor
	Parser
	Code Generator
	Libraries

	Bug Fixes
	General
	Driver
	Code Generator
	Assembler
	Parser
	Preprocessor
	Linker
	Libraries
	Header files
	Hexmate
	Chip Configuration File

	Addendum
	Microchip errata
	Updates


